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Fig. 1: Clustering techniques in an immersive sensemaking tool. (a)&(b): Before and after forming an explicit cluster in the
Proximity condition. Two or more documents in proximity to each other automatically create a new cluster; (c)&(d): Before and
after forming an explicit cluster in the Overlap condition. The user intersects two documents manually to form a new cluster; (e):
Informal cluster formed manually in the Freestyle condition; (f): Sample of a card in the Vehicle dataset;
Abstract— Immersive spaces have great potential to support analysts in complex sensemaking tasks, but the use of only manual
interactions for organizing data elements can become tedious. We analyzed the user interactions to support cluster formation in an
immersive sensemaking system, and we designed a semi-automated cluster creation technique that determines the user’s intent to
create a cluster based on object proximity. We present the results of a user study comparing this proximity-based technique with a
manual clustering technique and a baseline immersive workspace with no explicit clustering support. We found that semi-automated
clustering was faster and preferred, while manual clustering gave greater control to users. These results provide support for the
approach of adding intelligent semantic interactions to aid the users of immersive analytics systems.

1 INTRODUCTION

Visual analytic tools have evolved over the years to support the con-
tinuous increase of large multimedia datasets [1, 6, 14, 19, 33]. These
systems often aim to combine the computational power of the machines
and the insightful perspective of human analysts. The analytic process
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relies on the users interacting with dataset elements, exploring plausible
connections between them, organizing relevant information, and even-
tually solving a problem or making a decision which is often referred
as Sensemaking [43]. Examples of sensemaking activities range from
finding treatment for critical medical conditions [7, 8] to anticipating
acquisition of bio-weapons by foreign nations [43] to understanding
racial context among American soldiers during World War II [33] by
collecting, organizing, and comprehending information from various
sources. While each of these models address specific challenges, they
all highlight the need to organize the data.

A recurring behavior in sensemaking is the act of grouping relevant
documents in order to synthesize a common pattern, effectively forming
a cluster to reduce the workspace clutter [37,44] that has been observed
in many visual analytic platforms [1, 21, 33, 55]. Prior work has shown
that a machine could anticipate the user intent of creating such clusters
by observing their interactions with the system [13, 16, 21]. Essentially
the system could employ one of the many cluster identification algo-
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rithms [23] to automate the process of creating clusters, thus enabling
the analysts to remain more focused on the high-level analysis of the
data [18, 19]. This approach of coupling the user’s analytic interac-
tions with the computational steps to identify cluster is often termed as
semantic interaction [19, 20]. For example, a user could move a docu-
ment to a specific place with the intention of creating a spatial construct
within the workspace. Therefore, a semantic-interaction-enabled model
could anticipate this action, and create the spatial structure for the user.

ForceSPIRE [18] explored the benefits of semantic interactions on
large two-dimensional displays, and showed how similarity could be
represented simply by moving documents closer to each other. However,
the parameters for the clusters were updated in the background, and
there were not any explicit clusters for the users to interact with. In
recent years, VR researchers have been investigating the benefits of
analyzing 2D documents such as embodied notes [42], and maps [47]
in the 3D space. Lisle et. al [33] developed Immersive Space to Think
(IST) which allowed the users to create spatial layouts with 2D multi-
media documents in an immersive space to perform sensemaking tasks.

In our research, we extended IST to investigate the mechanisms of
leveraging semantic interactions to automatically create explicit clus-
ters in a three-dimensional visual analytic tool. In our design work, we
explored the following research question: RQ1: What is an appropriate
level of automation for a clustering feature in an immersive sense-
making system? We also sought to address two additional questions
through an experiment: RQ2: How does an explicit clustering tool help
the analysts organize an immersive workspace? and RQ3: What are
the benefits and challenges of having semi-automated clusters in an
immersive visual analytic system?

With these questions in mind, we developed three different condi-
tions: Freestyle (informal clusters, no semantic interaction), Overlap
(explicit clusters, no semantic interaction), and Proximity (explicit clus-
ters, semantic interaction). We consider documents that do not contain
sufficient information to allow automatic clustering by the system with-
out any user interaction. Both Overlap and Proximity allow the users
to create and interact with explicit clusters. With Overlap, the users
have more control over creating the clusters, while with Proximity,
the system creates the clusters for the users by leveraging semantic
interaction. Comparing Freestyle and Overlap would help us evaluate
the potential benefits of explicit clusters, while comparing Overlap and
Proximity would allow us to evaluate the effects of the semi-automated
clustering approach, and the tradeoff between control and convenience.
Our contributions include:

• The design of two interaction techniques providing explicit cluster
support, and a 2.5D visualization technique for clusters.

• An assessment of the benefits of explicit clusters in completing
sensemaking tasks in an immersive visual analytic system.

• An evaluation of the benefits and challenges of semi-automated
clusters and user-controlled clusters.

2 RELATED WORK

2.1 Sensemaking

Sensemaking is a cognitively difficult task that involves browsing large
amount of data to extract meaningful content, and inferring new re-
lations. Pirolli & Card proposed a model with two main loops that
complete this process: foraging and sensemaking [43]. The foraging
loop involves the analysts browsing the dataset to gather evidence,
while the sensemaking loop relies heavily on the success of organizing
the dataset by dividing it into clusters that help the analysts generate a
better understanding of the underlying data [52].

Sensemaking tools such as Analyst’s Notebook [2] and The Sand-
box [56] enabled users to organize and make connections between data
elements in a spatial workspace. Andrews et al. [1] demonstrated how
increased space provided an external memory for the users while they
made layouts to complete a sensemaking task. Immersive Space to
Think (IST) took this a little further by providing the users an uncon-
strained three-dimensional space for their sensemaking process [34].
Some studies have explored possible designs for interacting with groups
of documents in the immersive space. For example, Post-Post-it [32]
was motivated by the physical metaphor of post-it notes, and they devel-

oped interactions for creating, removing, and merging multiple groups
in the immersive space. Luo et al. [35] looked at the organization
strategies followed in AR collaborative applications, relying on the
furniture in the physical space to organize their documents.

We explore the effects of explicit clusters on users doing a simple
sensemaking task with an immersive visual analytic tool.

2.2 Semantic Interaction

Semantic interaction is defined as the process where the system can
capture the user action, interpret the user intent, map the user intent
to the underlying change in the spatial structure, and provide visual
feedback on the updated model within the visual metaphor [19]. Many
of the sensemaking tools have found it useful to provide users with
a workspace enabling them manually organize spatial representation
of information [2, 32, 49, 56]. Semantic interaction strives to enable a
similar ability, without requiring the user to manually create the spatial
structures [18]. Instead, the goal of the system is to learn from the
interactions and co-create the layout.

ForceSPIRE [19] illustrated a set of semantic interactions for analytic
process, and explained how they are associated with analytic reasoning.
For example, highlighting some text would mark the importance of a
phrase, or document movement would mean similarity/dissimilarity
with nearby/far documents. However, in ForceSPIRE, the system
largely takes the control of the layout away from the analyst.

In our research, we wanted to explore how we can give most of the
spatial organization control to the analyst, with the system just helping
to identify and make explicit cluster structures within the layout.

2.3 Clustering

Spatial analysis of data involves analysts rearranging documents and
creating spatial constructs including clusters [1, 21]. With explicit
clusters, users are able to externalize their semantics of the information
into the workspace [19]. Clusters serve the purpose of synthesizing
timelines, classifications, or just organizing thoughts in an external
knowledge space [34]. In one interesting approach in augmented reality,
a system showed potential for organizing clusters around physical
objects in the real world [35]. In fact, humans are so familiar with the
notion of clusters in their regular 2D applications that their ideas for
clusters have transferred to the 3D applications as well. Despite having
three dimensional space with six degrees of freedom, the users tend to
consider two documents as part of a cluster when one document is in
proximity to or overlaps with another document in the same plane [34].

Considering the common strategy of using clusters, we suggest that
it would be beneficial for the system to take care of the mundane
steps of creating a cluster, leaving users to be more concerned about
tasks that demand more human involvement. There are numerous
algorithms to identify clusters [22, 29, 36, 40, 41, 48]. However, most
of these algorithms are designed to create clusters from an already
existing group of objects scattered in a workspace. Furthermore, they
are not equipped with parameters to adapt their outputs to accommodate
users interacting with the individual documents in the cluster. Hence,
they are not fit for identifying clusters in a visual analytic process
where the workspace keeps changing to reflect the user’s mental model.
There are visual analytic systems with interactive clusters [15, 46] that
mostly focus on gaining insights from an aggregated visualization of
the dataset, and deprioritize the individual data contents, thus making
them unsuitable for sensemaking tasks. Hence, finding alternative
approaches to create cluster identification algorithms for visual analytic
tools remains an open research problem.

3 GOALS AND RESEARCH QUESTIONS

Our research was designed to address how automation in clustering can
help participants organize their immersive analytics workspace more
effectively. That led us to ask three broad research questions.
RQ1: What is an appropriate level of automation for a clustering
feature in an immersive sensemaking system?

We wanted to know what amount automation of the clustering pro-
cess could facilitate users’ analysis, rather than designing a feature with
too much automation that gets in the way. We reasoned that a fully
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automated clustering feature could make the user lose control over their
workspace. What if, instead of thinking of automation as the removal
of human involvement, we imagined it as the selective inclusion of
human participation? The result would be a process that harnesses
the efficiency of intelligent automation while remaining amenable to
human feedback, all while retaining a greater sense of meaning. We
addressed this question through an iterative design process (Section
4.1) before we moved on to our formal experiment.
RQ2: How does an explicit clustering feature help analysts organize
an immersive workspace?

We developed a set of clustering interactions such as creating, ex-
panding, removing, and merging clusters. Our hypotheses are that
having explicit clusters would make analysts faster in organizing their
workspace (H2a), would speed up the process of reorganizing an
existing workspace (H2b), and would make the final layouts of the
workspace more understandable and less ambiguous (H2c).
RQ3: What are the benefits and challenges of having semi-automated
clusters in an immersive visual analytic system?

We aim to understand how automating some (or all) of the cluster
interactions may affect user performance and satisfaction compared to
fully user-controlled or no cluster interactions. We hypothesize that
participants would prefer having more control over the clusters rather
than depending on the semi-automated technique (H3).

4 DESIGN PROCESS

To address RQ1, we performed an iterative design process in which we
explored the design space for semi-automated cluster interactions for
immersive analytics. We evaluated various clustering algorithms and
integrated the chosen algorithm into an interactive user experience. We
implemented a semi-automated cluster creation technique based on this
design, along with two comparison techniques.

4.1 Design Evolution

Algorithm First, we needed a fast, iterative algorithm that could
detect clusters of arbitrary size, shape, and density. Most traditional
approaches [36,41] to clustering rely on prior knowledge of the number
of the clusters K. Since the layout emerges throughout the sensemaking
process, there is no way to know in advance how many clusters there
will be. In addition, we need an algorithm to form clusters on the fly
as the user is creating the spatial layout, rather than one that looks at a
complete spatial layout to find the clusters.

Prior studies have proposed density-based [22,29], and graph-based
clustering [40,48], which do not require prior knowledge of K. Despite
showing excellent performance on detecting clusters with uniform data
distribution, and ideal shapes, they fall short on clusters varying in size,
shape, density, and noise (e.g., DBSCAN can only identify spherical
clusters). As clusters formed during sensemaking process can vary
significantly in size, shape, and density [33], these clustering methods
cannot be applied. However, the Dirichlet Process Mixture Model
(DPMM) has shown promising results in detecting arbitrarily shaped
clusters with no prior knowledge of K [3, 26, 27, 39]. In DPMM, every
time a new data point is included, it either joins an existing cluster, or
starts a new cluster [9, 24]. The flexibility makes DPMM particularly
promising for users iteratively browsing documents to create clusters.
User Experience Design We needed to understand when and how
this algorithm could be embedded in an analyst’s workflow of orga-
nizing documents in the immersive space. We launched an informal
exploratory study among the authors to observe the effects of different
approaches. We envisioned a human-AI collaboration where the users
are able to focus on the analysis, and the algorithm just augments the
process by providing helpful assistance [50, 51, 53].

Creating spatial clusters has been associated with the semantic in-
teraction of ‘document movement’ [19]. Hence, there are two possible
answers to the question of ‘when’: the system automatically applies
the algorithm after every document movement, or the user explicitly
triggers the algorithm after multiple document movements. However,
the latter approach prompted a challenge: the results of the algorithm
after moving several documents may not correspond to the user’s ex-
pectations. As we observed in our exploratory study, misplacement of

even a single document prompted the user to take a step back, review
all the documents since the last clustering, and make sure every doc-
ument was properly put in their intended cluster. The whole process
was time-consuming, annoying, and frustrating. So, we resorted to
applying the algorithm after every document movement, which reduced
the probability of a mistake, and reduced the realignment cost (even
if the algorithm gave an undesired result, the user could rearrange the
document immediately).

A second design consideration relates to which items should be
considered for automated clustering after every document movement.
We started with a fully automated system where all the documents were
given as input to the algorithm. This resulted in a lot of changes to
the workspace after each movement, which made users confused, and
the outputs did not always match the user intentions. Hence, the users
spent more time on rearranging the documents than completing the
task. After a series of design iterations, we concluded that the user gets
frustrated particularly when an already-formed cluster is restructured
by the system through the addition or removal of unwanted document(s)
without their involvement. So, we designed our system to only consider
the subset of documents that were not yet in any cluster, and create
cluster(s) with only those documents. That left the users in control
of other cluster-related interactions such as expanding, removing, and
merging (Section 4.3).

Finally, we needed to determine how the clusters should be visu-
alized. Typically, users of immersive analytic tools tend to create
clusters on two-dimensional planes, placing those planes in various
depths [32, 34], thus creating a 2.5-dimensional visualization. Follow-
ing a similar strategy, we created a rectangular plane that had the closest
distance to all the documents in a cluster, and moved all the documents
to that plane. We also found the smallest possible translations required
for the documents to not overlap each other while reflecting the layout
specified by the user. We determined the height and width of the rect-
angles based on spatial positions of the documents on the outer edges,
and made sure the rectangle held every document in the cluster while
leaving a small margin on the borders so that users could easily grab
and move the clusters.

4.2 Techniques

In order to understand the effects of the semi-automated clustering
technique, we implemented a semi-automated technique (Section 4.2.1),
and a technique that was fully user-controlled (Section 4.2.2). We also
had a control technique without any cluster interactions (Section 4.2.3).
In all three techniques, the users could select and move individual
documents with a ray-casting interaction.

4.2.1 Proximity

This technique allowed the users to create explicit clusters in addition
to interacting with the individual documents. After every document
movement, the DPMM algorithm was applied to all the documents that
were not part of any cluster. The algorithm returned the documents with
the clusters they belonged to. Based on the output, the system created
rectangular clusters for the documents (Figure 1(a)&(b)). Essentially,
from the user’s perspective, each cluster contained documents that were
in proximity to each other.

4.2.2 Overlap

In addition to all the individual document interactions, this condition
allowed the users to create explicit clusters by overlapping two docu-
ments with each other. Any documents that touched each other were
highlighted with a yellow border (Figure 1(c)&(d)). This visual feed-
back let the user know about the consequence of their action in advance,
so that the user could move the document away again if they did not
want the cluster to be created. Releasing the document while it was
still highlighted created a rectangular cluster that would hold all the
documents that were touching each other.

4.2.3 Freestyle

The user did not have any explicit clusters in this condition (Figure 1(e)).
They could move around individual documents, create labels, and move
around individual labels.
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4.3 Additional Cluster Interactions

In addition to creating clusters, the system allowed the users to interact
with the clusters in other ways.
Cluster Movement Similar to document movement, the users could
grab a cluster, move it around, and place the cluster anywhere in the
immersive environment.
Cluster Expansion/Reduction/Rearrangement Users could expand
an existing cluster by adding new documents to it. New documents
could be added by overlapping them with the cluster. Clusters lighted up
whenever they touched another document (not in the cluster) providing
the user a visual feedback on their action. The users could also grab a
document already in the cluster, and move it away causing the cluster
to shrink in size. The documents could also be rearranged inside the
cluster by grabbing a document, and moving it to another position of
the same cluster plane.
Cluster Merger The users could also merge two or more clusters
together to create one big cluster. A user could merge clusters by
grabbing a cluster and bringing it closer to another cluster so that they
overlap each other. All the clusters that were touching another cluster
would light up to provide visual feedback.
Cluster Removal The users could remove a cluster by moving
documents away from the cluster one by one until there was just one
document left, and the cluster was deleted. In the Proximity condition,
the lone document would then be considered as an input for the next
run of the algorithm.

5 EXPERIMENTAL DESIGN

In this section, we present the various aspects of the experiment that we
conducted to find out how explicit clusters help the analysts (RQ2), and
investigate the benefits and challenges of the semi-automated clustering
technique (RQ3).

We conducted a within-subjects experiment to evaluate the effect of
our independent variable, clustering technique, on dependent variables,
including interaction velocity, cluster movement time, cluster size, and
the cluster validation score.

5.1 Experimental Task

The goal of our experiment was to understand how the ability to cre-
ate/manipulate explicit clusters, and the ability of the system to automat-
ically create new clusters, affected performance, usability, and strategy
during a simple sensemaking task. With that goal, we chose a document
classification task with common recognizable items from three datasets:
Food, Animal, and Vehicle, which is similar to a card sorting task [54].
Each set consisted of 30 cards, each of which showcased an image of
an item accompanied by its name on the side (Figure 1(f)).

The images of the dataset were chosen with the criteria that they
should be familiar to most people and easily distinguishable. Addition-
ally, we wanted to observe the reorganization strategy of the users when
they encountered new data items while they already had an organized
workspace. Hence, we split the datasets into two subsets of 15 cards.
When the users completed the organization of the first subset, we pre-
sented the second half of the dataset, which the users had to incorporate
in their already existing workspace.

We wanted to encourage the participants to create a tidy workspace
with meaningful sets of cards that could be presented to an audience.
Therefore, we likened the workspace to an exhibition room, and gave
the participants the role of a curator. The participants were instructed
to group the cards into clusters in a way that made sense to them. They
were told that the final layout should be an exhibition space for kids
who can learn to recognize the items from the curated groups. The
participants also had to come up with a relevant label for each of the
groups. For each condition, the participants had ten minutes to curate
the exhibition space with 30 cards.

5.2 Apparatus

We used a Varjo XR-3 head-worn display 1 running on a desktop PC
with an Intel i9-9900k processor and an NVIDIA GeForce RTX 2080

1https://varjo.com/products/xr-3/

Ti graphics card. User movement was tracked by a SteamVR 2.0 Light-
house tracking system covering a four-by-eight meter space that we
kept clear of obstacles. The application was implemented using Unity
v2020.3.9. The DPMM algorithm was implemented using the sklearn
library in Python v3.8, communicated with the Unity application via a
local server-client port.

The user held one Valve Index controller 2 to interact with the doc-
uments. As one of the most effective selection technique [4, 33], we
chose a ray-casting method with depth control for selection and manip-
ulation of documents within the workspace. A virtual ray emanated
from the controller, and the first document the ray intersected could be
selected by pressing down the trigger. The selected document stuck to
the ray as the user moved the controller around. The user could use the
joystick to change the distance of the selected document from its initial
position along the ray. Text input for creating labels was achieved by
using a pass-through AR “desk portal” that allowed the user to view
and interact with a keyboard on a tracked wheeled desk. This afforded
the user the ability to put down the Index controller and then type on a
keyboard as they might do at a traditional computer workstation.

5.3 Participants

We recruited 27 participants (10 females) with a minimum age of
20 years and maximum age of 39 years old (µ = 26,σ = 4). Six
participants had no prior VR or AR experience, while ten had only used
VR or AR once or twice, and the rest used VR or AR more than twice.
Two participants wore contact lenses, while three used glasses, and the
remaining 22 had uncorrected vision. The experiment was approved by
the university’s institutional review board.

5.4 Procedure

We split our study into five phases: pre-study, training, main study,
subjective assessment, and post-experiment interview. The training,
main study, and subjective assessment phases were repeated for each of
the three conditions, while the pre-study and post-experiment interview
phases were conducted once per participant.
Pre-Study During the pre-study phase, we sent out a questionnaire
along with the recruitment email to collect demographic information,
understand their experience with VR/AR, and to schedule a time for
the experiment. On the scheduled day, we presented the participant an
informed consent form to read and sign. We briefly explained the goal
of our experiment, and allowed them to get familiar with the physical
space. This phase lasted five minutes on average.
Training In this within-subjects study, the participant experienced
all three conditions. We counterbalanced the order of the conditions
according to a Latin square to avoid bias for any particular condition.
For each condition, we demonstrated how the clustering technique
worked with two physical cards followed by a training session in VR.
We used a set of ten cards for this session that were not in the main
datasets. If it was the first condition, we started the training by showing
the participant the boundaries of the tracked area, and teaching them
how to interact with the cards with the controller. The participant also
learned how to create labels with the keyboard seen through the “Desk
Portal”. We proceeded to show the participant each feature of the
clustering technique, and allowed them to explore the environment and
practice the controls. To help in their learning, we gave them a set of
tasks which were designed so that the participant got to try out all the
features of the clustering technique. The participants spent 5-7 minutes
on this phase.
Main Study When the participant completed the given tasks, and
was satisfied with their preparation, we launched the main study that
involved the participant performing the experimental task described
in Section 5.1 with the clustering technique they just learned. An
experimenter was always present in the room to a) ensure the participant
did not hit any physical obstacle, and b) provide the second half of the
dataset as soon as they were done with the first half. The participants
took an average of 8.44 minutes per technique for this phase.

2https://store.steampowered.com/app/1059550/Valve Index Controllers/
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Subjective Assessment After indicating that they had completed the
main phase, the participants then would start the in-VR presentation.
This involved an experimenter posing as the audience and asking the
participant for a tour of the exhibition space. This prompted the par-
ticipant to describe the clusters they formed, and explain any spatial
relationships they used during the classification. Following the presen-
tation, we helped the participant take off the headset. We presented
them a NASA Task Load Index (TLX) questionnaire [25] for measuring
the mental workload after experiencing the condition, and a System
Usability Scale (SUS) questionnaire [28] to collect the subjective as-
sessment of the usability of the condition. This phase took five to ten
minutes to complete per technique.
Post-Experiment Interview Upon completion of all three conditions,
we wanted to understand the participant’s preference. We isolated
seven different relevant scales from the NASA TLX and the SUS
questionnaires, and asked the participants to rank the three conditions
based on: ease of use, comfort, performance, learnability, usefulness,
mental workload, and physical workload.

Finally, we conducted a semi-structured interview with a series of
open-ended questions. The interview was designed to gather feedback
about the three conditions from different perspectives. We asked the
participants about their user experience, what features they liked, and
what features they would add to improve the organization experience.
We also asked which of the three conditions they would choose for
their daily organization tasks (and why), what features were useful or
were frustrating, and if they had any general comments. This phase
took between ten to fifteen minutes.

5.5 Data Collection and Measures

We collected a variety of data in order to measure the participants’
actions, preference, and the cluster outputs during the experiment.

We screen-recorded the main study (seen from the participant’s POV)
using the Varjo Desktop Application’s recording feature. This allowed
us to review what the participant was doing, and revisit the evolution
of their workspace organization after the experiment. We also kept a
log of all user interactions with the cards and clusters ( with associated
time-stamps) in an external file. This gave us an opportunity to analyze
their action intents and results with precision. We also recorded the
final positions of all the cards, clusters, and the labels that allowed us
to see the final layout of the workspace, and compare how neat the
workspace was for the three conditions.

We used the Qualtrics website to collect answers from the pre-
study questionnaire, NASA TLX questionnaire, and the SUS ques-
tionnaire. The answers from the subjective assessment phase, and the
post-experiment interview were recorded using Google Pixel’s Record-
ing app that also transcribed the audio. We reviewed the transcriptions
for possible errors, and used them for further analysis.

6 RESULTS

6.1 Quantitative Analysis

6.1.1 Interaction Velocity

We define Interaction velocity as the distance the participant moves
a card per second, and we use this as a measure of interaction effi-
ciency. A one-way ANOVA revealed a statistically significant effect of
condition on interaction velocity (F = 18.3, p ≤ 0.001). In post-hoc
analysis with Bonferroni correction, we found very strong evidence
(Figure 2) that the mean interaction velocity in Proximity is larger than
both Freestyle (p ≤ 0.001, cohen’s d= 0.3), and Overlap (p ≤ 0.001,
cohen’s d= 0.2). There was no significant difference in mean interac-
tion velocity between Freestyle and Overlap .

We ran further analysis to understand how the participant behaviors
changed over time during a condition. As mentioned in Section 5.1,
each condition was split into two sessions. For each condition, we
performed Student’s t-test to understand how the interaction velocity
changed in the second session compared to the first session (Figure 3).
We found that interaction velocity significantly increased in the second
session of Overlap compared to the first session (t = 11.09, p ≤ 0.001,
cohen’s d= 0.2). There was no significant difference of interaction

Fig. 2: Interaction velocity in Proximity is higher than Freestyle and
Overlap. Despite having clusters, interaction velocity in Overlap is not
different from the interaction velocity in Freestyle.

Fig. 3: Interaction velocity changes in the second session. In Overlap,
the users are faster in the second session.

velocity between the two sessions for either Freestyle or Proximity.

6.1.2 Reorganizing the Workspace

We wanted to analyze the efficiency of the participants in the different
conditions when they had to rearrange an existing workspace. We
looked at the time taken to move entire clusters, and how it varied
depending on the number of documents in the cluster.

Both Overlap and Proximity conditions had explicit clusters, thus
allowing us to analyze the cluster movement time from the log files.
However, the Freestyle condition did not have any explicit clusters,
making the analysis of the cluster movement time non-trivial. We
analyzed this by reviewing the screen capture of the participant actions
in the Freestyle condition. We identified a group of cards as a cluster
if a) the participant created a label close to the group of cards, or b)
the intra-card distance was smaller than the distance to all the adjacent
groups of cards. The cluster identification was verified by the in-
VR presentation of the workspace by the participant at the end of
their session. We considered an action as a cluster movement if the
participant moved two or more documents of the same cluster from one
place to another through two or more consecutive actions.

We plotted the cluster movement times against the number of cards
in each cluster (Figure 4). Pearson’s correlation test revealed that the
cluster movement time in Freestyle is positively linearly correlated
with the number of cards in the clusters (coe f f f reestyle = 0.56), while
in Overlap and Proximity, the cluster movement time has no significant
correlation with the number of cards in the cluster (coe f foverlap =
−0.023, coe f fproximity =−0.017).

6.1.3 Cluster Size

As we saw in Figure 4, the participants tended to create larger clusters in
Proximity and Overlap than in Freestyle. This prompted us to analyze
the effect of condition on average cluster size which was determined
by the number of cards in the cluster.

A one-way ANOVA revealed that there was a statistically signif-
icant effect of condition on the cluster size (F = 10.34, p ≤ 0.001).
In post-hoc analysis with Bonferroni correction, we found evidence
(Figure 5) that the mean cluster size of both Overlap and Proximity are
significantly higher than the mean cluster size of the Freestyle condition
(between Freestyle and Overlap: p ≤ 0.001, cohen’s d = 0.5, between
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Fig. 4: Cluster movement times in each condition, compared to number
of cards in the cluster. The blue line is the regression line for Freestyle,
while the blue shaded area is the confidence interval for the regression
estimates. In Overlap and Proximity, the cluster movement time stays
constant (orange and green lines respectively).

Fig. 5: Average cluster size in Freestyle is lower than Overlap and
Proximity.

Freestyle and Proximity: p ≤ 0.05, cohen’s d= 0.4).

6.1.4 Workspace Neatness

To calculate the neatness of the workspace quantitatively, we measured
the Silhouette Scores (SS) [45] of each of the participants for the three
conditions. SS is a measure of how similar an object is to its cluster
compared to other clusters. SS is computed using the mean intra-cluster
distance, and the mean nearest-cluster distance for each sample. A high
value (max=1) of the SS would mean that the clusters are well-defined
while a low value of zero would indicate that the clusters are hardly
distinguishable in the workspace.

We found that condition had a statistically significant effect on SS.
Post-hoc analysis with Bonferroni correction revealed (Figure 6) that
the mean SS of both Overlap and Proximity are significantly lower
than the mean SS of the Freestyle condition (between Freestyle and
Overlap: p ≤ 0.001, cohen’s d= 2.2, between Freestyle and Proximity:
p ≤ 0.001, cohen’s d= 1.8).

6.1.5 Workload and Usability

We found no significant difference in the NASA TLX Scores among
the three conditions, nor did we find any significant difference in the
System Usability Scales [11] among the three conditions. However, the
average SUS scores for all three conditions were higher than 85, which
is considered “Excellent” [5].

Fig. 6: Silhouette Score in Freestyle is higher than the Silhouette Scores
in Overlap and Proximity.

6.2 Qualitative Analysis

For qualitative analysis, we went through the answers in the post-
experiment interview. We started by transcribing the interviews for
each participant, and putting them all in the same document. First, we
generated initial codes for each response. We found common themes
among the codes, and proceeded with defining and naming them. We
went through the initial set, and looked for similar themes that could
be combined, leading us to a smaller set of themes. After a series
of iteration, we ended up with three major themes describing factors
participants felt most influenced their experience with clusters in the
experiment: Convenience, Control, and Creativity.

6.2.1 Convenience

The participants preferred their system to be easy, fast, and convenient
to make sure not much thought was required for organizing the clusters.
The participants found that although the Freestyle condition was the
easiest to learn among the three, having explicit clusters definitely
made the organization part of the task more convenient. They said it
was faster, and it required less awareness of the cards in the clusters
individually, thus reducing cognitive effort:

“Definite clusters reduce effort to manually organize the
images in a way that defines a group.” (P019)

All but three of the participants preferred one of the conditions with
explicit clusters (Proximity or Overlap), rather than the no-cluster
condition (Freestyle). 22 out of 27 participants (81.5%) specifically
called out the explicit clusters to be a useful feature, particularly when
they had to reorganize their workspace:

“I can move all of them as a group to wherever you like.
Also, I can remove one card without breaking the entire
group. That was the most convenient feature.” (P016)

However, the comparison of the two conditions with explicit clusters
was not as straightforward. While some participants liked the Overlap
condition for having full control over the clusters, more participants
(20 out of 27) preferred the Proximity condition specifically because
of its similarity with the Freestyle condition in terms of simplicity.
Participant P014 put it this way:

“It [Proximity] was as easy as Freestyle, with the added
benefits of having clusters.”

Also, the participants did not like overlapping cards as “you have to
consciously make an effort to bring the images very close to each other,
and see the color changes to make a cluster” (P003).

6.2.2 Control

The desire to have control over the workspace divided the participants
into two factions. One faction (18 out of 27 participants) thought having
control over every aspect of the clusters was distracting, and preferred
to have the system take care of the clusters while they focused more
on completing the task. They chose the Proximity condition over the
Overlap condition because of its assistive feature:

“As clustering is kind of auto, I don’t have to think about
whether it’s cluster or not. That saves my time.” (P001)

Participants also shared how the Proximity condition offered better
performance by making them faster in their organization task:
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Fig. 7: Final layout of participant P012 who preferred the Freestyle
condition. They created sub-clusters (marked by dotted and solid
circles) inside a bigger cluster (left-most).

“As long as the cards were close enough, it grouped itself. I
was able to organize them much quicker.” (P010)

The rest of the participants were in favor of the Overlap condition
because it offered full control over their workspace. Since there was a
definite action to create clusters (overlap), the participants were always
aware of the newly developed clusters prior to their existence. This
gave them a sense of control over their workspace. There were three
participants who were frustrated with the Proximity condition as they
were losing control over their workspace because of unwanted clusters.
According to Participant P002,

“Sometimes [Proximity] would create cluster by itself even
though I did not want it to ... I would have to put more effort
to put them far enough so that they do not create a cluster.”

Furthermore, the visual feedback on their action (highlighting the over-
lapping documents) helped them to see into the future before making
their final decision. That enabled them to make split second decision
changes without causing major updates to the workspace:

”It’s only easier to Overlap than bringing stuff closer and
just hoping them to make a cluster.” (P015)

6.2.3 Creativity

While most of the participants liked having clusters, there were three
participants who preferred the Freestyle condition over the other two.
All three of them reiterated the necessity of having creativity in their
organization that they could not achieve if there were explicit clusters.
They wished to have control over the three-dimensional positions of
the documents in the same cluster to develop clusters with various size
and shape. Participant P004 said,

”Freestyle was the quickest to adapt and also the way to be
the most creative.”

For example, Figure 7 shows the final layout of a participant who
preferred Freestyle for the creativity it allowed. They created five
clusters. In the left-most cluster, which was labelled “run on ground”
by the participant, they made subdivisions inside the cluster. They
kept regular ground transports (bus, taxi, rickshaw, bicycle, go-cart)
in one sub-cluster, while keeping the two ground transports used in
construction (crane, tractor) in another sub-cluster. The sole document
on the top represents a military ground transport (Humvee) that the
participant kept separate from the others.

6.3 Suggested Features

Finally, participants presented several additional features that they
would want in a clustering tool. First, in addition to creating clusters,
participants wanted the system to automatically create or suggest labels
for the cluster based on its contents. Second, even in this simple
classification task, participants wanted to create subgroups inside each
group. Third, participants wanted to have auditory feedback for when
clusters were created, expanded, or deleted.

7 VALIDATION STUDY

Although our findings from analyzing the interaction velocity supported
our hypothesis regarding the clusters making the participants faster
(H2a), they went against our hypothesis regarding the participants
preferring having more control over the clusters (H3). This prompted
us to revisit our techniques from a critical perspective. We noticed that

even though the aggregated results showed the Overlap technique to
make the participants slower, they were a lot faster by the end of their
task compared to when they started. Further investigation into the video
screenings of the participants’ sessions revealed that many participants
were actually having issues to meet the criterion of Overlap to create
clusters. They ended up performing consecutive interactions with the
same document over a longer period of time, thus, making them slower
in their overall classification task. In their interviews, they mentioned
that they were struggling at first because they were having trouble with
the ray-casting technique to bring the cards to an overlapping position
with another card. As evidenced by prior studies, ray-casting does
not afford rotation of a card in place since rotating the controller also
causes translation of the card at the end of the ray [10, 31]. The farther
the card is, the worse the effect becomes. In addition, the joystick to
change distance between the card and the participant was too sensitive,
thus, making it harder to cause a card to align with another. With every
push or pull of the joystick the card would either go behind or come to
the front of another card instead of overlapping it.

We hypothesized that these issues could be the deciding factors
for the participants to prefer Proximity over Overlap. Therefore, we
replaced the selection method with HOMER [10], a technique where
after selecting a card with a ray, instead of the card becoming attached
to the end of the ray, the virtual hand moves to the card position and
is attached to the card. Thus, HOMER uses the metaphor where the
user is grabbing the card with their own hand regardless of the card’s
distance from the user, enabling them to rotate the card in place by
rotating the physical hand. Upon releasing the card, the virtual hand
would return to the position of the physical hand.

With the HOMER modification, we ran a small within-subjects
validation study with four participants and two conditions: Overlap and
Proximity (since we wanted to see if HOMER improved the results
for Overlap). The results from this validation study turned out to be
comparable with the original experiment. We found that participants
still struggled in the first session of Overlap, and they got faster by
the end of the second session. There was still no effect of session on
interaction velocity for Proximity. Two participants preferred Overlap
because of having more control, and two participants chose Proximity
because of its ease of use. Since there was no overwhelming evidence
that the change to HOMER changed our results, we concluded that the
ray-casting method was not the primary factor for the participants to
prefer the semi-automated technique in the original experiment. Rather,
they liked the Proximity technique for its intuitive automated assistance
in creating clusters.

8 DISCUSSION

Even though we started our study with a motivation to automate the clus-
tering process, our design exploration revealed how a fully automated
system could do more harm than good which aligns with findings from
prior works [17]. Users were frustrated, annoyed, and spending more
time on fixing the automated outputs rather than progressing with their
analysis. Through an iterative co-design process with users, we were
able to reduce the automation such that the system had control over only
the creation of clusters, while users took over the other aspects of clus-
ter interaction. Essentially, we ended up employing human-in-the-loop
design in cluster interaction, making it a semi-automated clustering
technique. Although we found an appropriate automation level, there
were still some issues with automation having undesired effects.

In our experiment, we found that Proximity made interaction faster
than the other techniques (partially supporting H2a), and the partici-
pants preferred it over Overlap because of it being easier to use, even
though both had explicit clusters. However, upon further examination,
the analysis shows that the participants were slower in Overlap only for
the first session. By the end of the second session, they became as fast
in Overlap as in Proximity. This suggests that Overlap required some
learning, but was not inherently slower.

We also found evidence to support our hypothesis (H2b) that ex-
plicit clusters made it easier for participants to complete their task,
particularly when they had to reorganize an already existing workspace.
We showed, and the participants reiterated, that the moving time for
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clusters in the Overlap and Proximity techniques was faster, and in-
dependent of the number of documents, while cluster moving time in
the Freestyle technique increased linearly with the number of cards
in the cluster. However, the participants could reach a faster moving
time with a multi-object selection feature in the Freestyle technique.
However, finding a standard multi-object selection technique is still an
open research problem [12, 30, 38], thus, making it out of our study’s
scope. In addition, as the participants found it easier to make changes
with explicit clusters, they ended up creating larger clusters when they
had explicit clusters, which allowed them to move many documents at
the same time.

However, the clusters did not make the workspace more understand-
able and less ambiguous from a quantitative point of view. Silhouette
Scores (SS) for Overlap and Proximity tended to be close to zero, in-
dicating that there were actually overlaps among the clusters, while
SS for Freestyle was closer to one, implying that the clusters formed
in that condition were more distinct, contrary to our hypothesis (H2c).
Participants in the IST have showed similar trends in prior studies [34]
where they created dense spatial layouts to organize their mental mod-
els. However, our video analysis reveals that despite having overlaps in
the clusters, the users considered the workspace more presentable, as
the explicit borders around each of the clusters helped them distinguish
one cluster from the other. On the other hand, in Freestyle, the partici-
pants had to depend solely on the inter-cluster distance to keep them
distinct. We believe this finding has a greater implication in working
with larger datasets as it shows that having explicit clusters allows the
users to require less space, and yet have distinguishable layout.

Between the two conditions with explicit clusters, the participants
preferred the semi-automated Proximity technique. Even though they
acknowledged that the Overlap technique allowed them to have more
control over their layout, they liked Proximity because of its simplicity
and ease of use, which contradicts our hypothesis (H3). Participants
found it convenient to create clusters in collaboration with an AI which
made their spatial organization process “as easy as freestyle with the
added benefits of the explicit clusters”.

Finally, our experiment extracted the desired features that users
want in an immersive clustering tool. The Proximity technique showed
promise with its ease of use, and the ability to make the users faster.
The participants liked Overlap for its control over the workspace, and
instinctive visual feedback for cluster formation. Even the Freestyle
technique was preferred by some of the participants because of the
freedom it offers. An ideal clustering technique should have the conve-
nience of automatic clustering, but also give the users a sense of control
with meaningful visual feedback. Once the clusters are formed, the size,
shape, and the structure of the clusters should be open to customization.

9 LIMITATIONS

We kept our task simple so that the users could complete the classifica-
tion task easily with the clustering technique they were provided. This
allowed us to disregard the complexities around navigating complex
datasets, and narrow our focus on comparing the users’ perception of
clustering techniques. Future studies need to design a task involving
more than simple classification, and using a more complex dataset
involving large textual documents, if we want to have a more ecologi-
cally valid evaluation of clustering techniques for sensemaking tasks in
immersive visual analytic tools.

10 CONCLUSIONS AND FUTURE WORK

In this paper, we presented the results of our investigation into how
automating clustering techniques can help analysts working with an
immersive visual analytic tool to organize documents during a sense-
making task. We found that users are not comfortable with fully auto-
mated systems, as they can tend to deviate from the user intentions. We
proposed a semi-automated clustering technique that proved to make
users faster, and the users found it more convenient to create spatial
structures in collaboration with an AI. This suggests there is significant
potential for other intelligent assistance features in complex immersive
analytic workflows. We showed how the semi-automated approach can
be improved by adding visual feedback, and affording more creativity

to the users. In addition, we found that explicit clusters made the final
layouts formed by the users more presentable, requiring less space,
and clusters allowed the users to reorganize their workspace in a faster
fashion independent of the document count in the cluster.

One of the future directions of this research will be investigating the
effects of the clustering techniques on a more complex task involving
textual datasets. We will also explore additional intelligent features for
immersive sensemaking, such as auto-labelling clusters, searching for
new similar documents from a larger data space, and updating the level
of details of the clusters based on the user’s needs.

ACKNOWLEDGMENTS

This work was supported in part by NSF I/UCRC CNS-1822080 via
the NSF Center for Space, High-performance, and Resilient Computing
(SHREC).

REFERENCES

[1] C. Andrews, A. Endert, and C. North. Space to think: large high-resolution
displays for sensemaking. In Proceedings of the SIGCHI conference on
human factors in computing systems, pp. 55–64, 2010.

[2] C. Andrews and C. North. Analyst’s workspace: An embodied sense-
making environment for large, high-resolution displays. In 2012 IEEE
Conference on Visual Analytics Science and Technology (VAST), pp. 123–
131. IEEE, 2012.

[3] C. E. Antoniak. Mixtures of dirichlet processes with applications to
bayesian nonparametric problems. The annals of statistics, pp. 1152–1174,
1974.

[4] F. Argelaguet and C. Andujar. A survey of 3d object selection techniques
for virtual environments. Computers & Graphics, 37(3):121–136, 2013.

[5] A. Bangor, P. Kortum, and J. Miller. Determining what individual sus
scores mean: Adding an adjective rating scale. Journal of usability studies,
4(3):114–123, 2009.
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